

Practical Course on Big data analysis: transcriptomics, metabolomics, CyTOF and flow cytometry

Milena Sokolowska Domingo Barber Jozef Janda

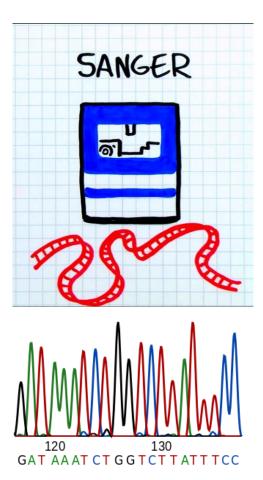
WS 2020 Chamonix, France

Understanding next generation sequencing through gene ontologies and user-friendly platforms

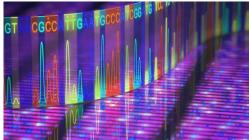
Milena Sokolowska MD, PhD

Head Immune Metabolism Swiss Institute of Allergy and Asthma Research University of Zurich

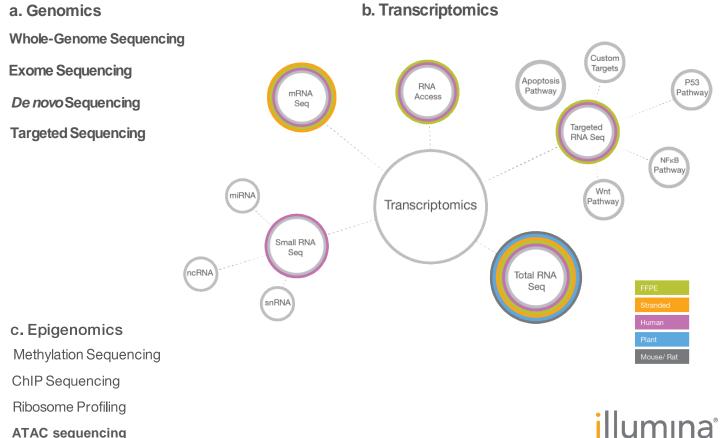
WS 2020 Chamonix, France

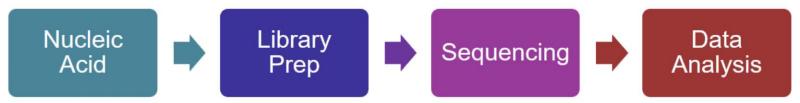

Disclosure

In relation to this presentation, I declare the following, real or perceived conflicts of interest:

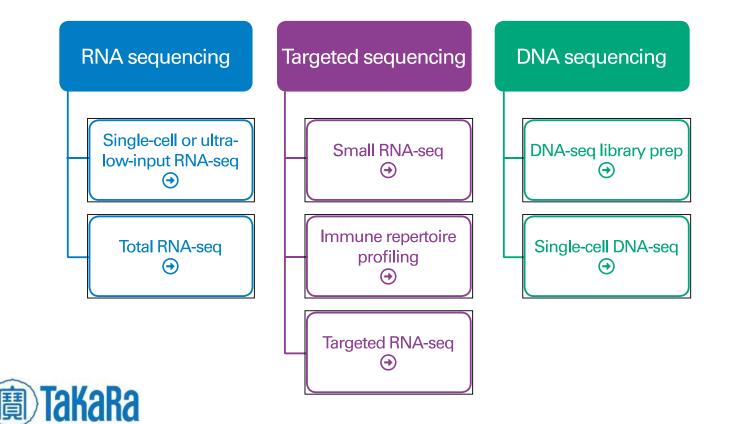

Туре	Company
Employment full time / part time	n/a
Research Grant (P.I., collaborator or consultant; pending and received grants)	SNSF grnat, Allergopharma grant, GSK grant
Other research support	n/a
Speakers Bureau / Honoraria	n/a
Ownership interest (stock, stock-options, patent or intellectual property	n/a
Consultant / advisory board	n/a

A conflict of interest is any situation in which a speaker or immediate family members have interests, and those may cause a conflict with the current presentation. Conflicts of interest do not preclude the delivery of the talk, but should be explicitly declared. These may include financial interests (eg. owning stocks of a related company, having received honoraria, consultancy fees), research interests (research support by grants or otherwise), organisational interests and gifts.


Sequencing of any generation



Types of NGS experiments



ATAC sequencing

NGS workflow

Choosing the source and type of nucleic acid

Clontech TakaRa cellortis

Library preparation methods

Whole genome libraries

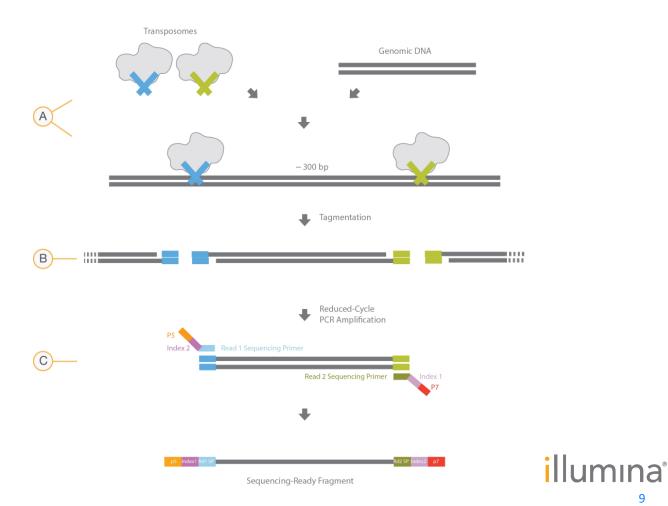
- de novo or resequencing

RNA-seq libraries

- mRNA-seq, total RNA-seq, small RNA-seq

Shotgun metagenomics

 Sequencing multiple genomes or transcriptomes from the same sample

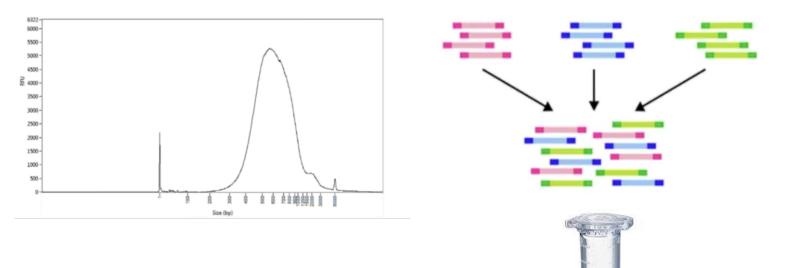

Bisulfite libraries

Discover sites of DNA methylation

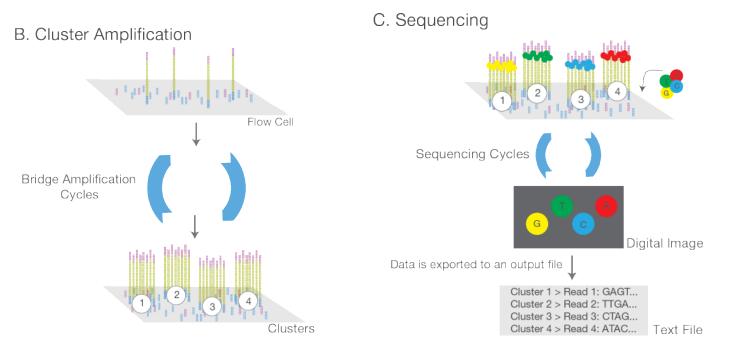
Customized libraries

Library preparation

Library preparation



P7 binding regions on either end of a library


binding regions

unique index or barcode sequence

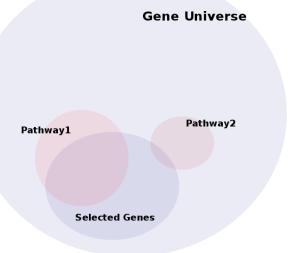
Library quantification and pooling

Sequencing

Library is loaded into a flow cell and the fragments are hybridized to the flow cell surface. Each bound fragment is amplified into a clonal cluster through bridge amplification.

illumina

Sequencing reagents, including fluorescently labeled nucleotides, are added and the first base is incorporated. The flow cell is imaged and the emission from each cluster is recorded. The emission wavelength and intensity are used to identify the base. This cycle is repeated "n" times to create a read length of "n" bases.


Data analysis

D. Alignmer	it and Data Anaylsis	Demultiplex	Align
Reads	ATGGCATTGCAATTTGACAT TGGCATTGCAATTTG AGATGGTATTG GATGGCATTGCAA GATGGCATTGCAA	1 CATTCGACGGATCG CATTCGTGGCAGTC CATTCGCAGTTCATT CATTCGAACTTCGA	
	GCATTGCAATTTGAC ATGGCATTGCAATT AGATGGCATTGCAATTTG	AACTGAGTCCGATA AACTGATCGGATCC AACTGAACCTGATG	
Reference Genome	AGATGGTATTGCAATTTGACAT	AACTGAGATTACAA	

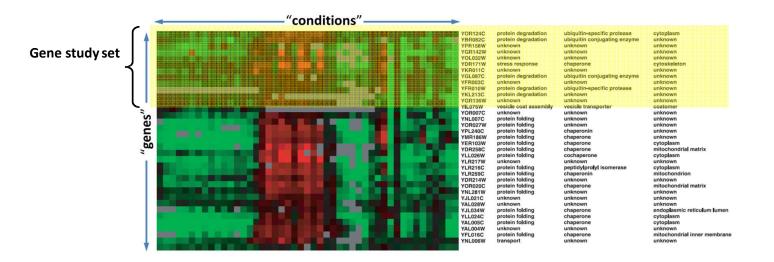
Reads are aligned to a reference sequence with bioinformatics software. After alignment, differences between the reference genome and the newly sequenced reads can be identified.

E. Statistical analysis

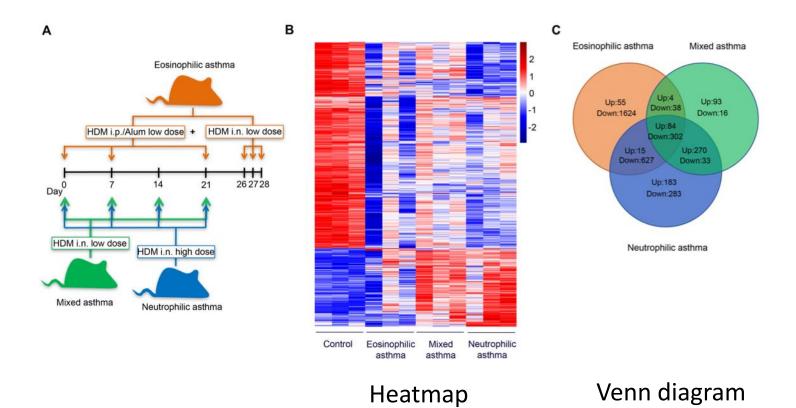
Explorative Functional Analysis

- NGS data/results
- Functional databases/gene ontologies
- Enrichment of gene sets
- Tools

Step 1: What are your data about? Which comparison?

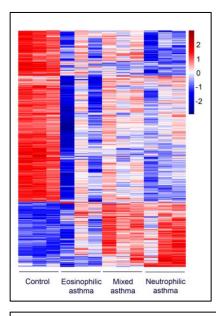

) 🕘 📋 🖪 🖡	ы ю • I	ب ∎					💼 res	ults_3 mont	hs vs befo	re_allergy						Q~ s		
Home Insert	Page Lay	out Formul	as Data	Review	View													2+ Share
Cut	Calibri (B		• A• A•	= =	= **	=¥	Wrap Te	C	neral			• 🍞•	~	• — •	. ×.	I⇔I ■ *	AutoSum	
aste 🞻 Format	B I	<u>U</u> • •	\land 🖌 🔹	= =	•		Merge & Ce	nter 🔹 🚺	* %	00. 0. 00.	Conditio	onal Format	Cell Styles	Insert	Delete	Format	🥢 Clear 🔻	Sort & Filter
1 ‡ × \	f _x Al	TB02V02_A1_FP	KM															
A	С	D		н		м	N	0	z	AC	AD	AE	AF	AG	AH	AI	AJ	AL
ene id 🔻 ge	ene_name 🔻	type 🔻	description			GO.BP 🔻	GO.MF 🔻	GO.CC 🔻	logFC 🔻	PValue 🔻 Fl	DR 🔻	o.all ▼ p	.ref 🔻	p.sample 🔻	f.all	▼ f.ref	▼ f.sample ▼	AITBO2VO3 A1 F
NSG00000169429 C		protein_coding		mokine liga	nd 8 [Source:HGN				-	1.58E-19		0.31578947		0.66666667		6	0 6	1500.306288
NSG00000085265 F0		protein_coding			bol;Acc:HGNC:36					6.25E-19		0.31578947		0.666666667		6	0 6	410.9100521
NSG00000038427 V		protein_coding			bol;Acc:HGNC:24					2.53E-17		0.26315789		0.55555556		5	0 5	81,97497212
NSG00000090382 L		protein coding			mbol;Acc:HGNC:6					1.31E-16		0.31578947		0.55555556		6	1 5	724.9306348
NSG00000277632 C		protein coding		,	3 [Source:HGNC					2.44E-15		0.31578947		0.666666667		6	0 6	211.7736849
NSG00000197249 S		protein coding			Source:HGNC Svr					5.97E-15		0.26315789		0.55555556		5	0 5	404.6907173
NSG00000257764 A		long_noncoding	NA	inemper 2 [NA	NA	NA	11.9230826			0.31578947		0.55555556		6	1 5	623.0982779
NSG00000137441 F0		protein coding		th factor hir	ding protein 2 [S			GO:0005576		1.08E-14		0.47368421		0.88888889		9	1 8	197.6904287
NSG00000136826 K		protein coding			e:HGNC Symbol;					1.33E-14		0.31578947		0.666666667		6	0 6	115.706539
NSG00000277089 A		long noncoding	NA	tor 4 [sourc		NA	NA	NA	11.7800139	4.93E-14		0.31578947		0.666666667		6	0 6	271.4642843
NSG00000100450 G		protein_coding		urce HGNC	Symbol:Acc:HGN					5.67E-14		0.57894737	0.2	1		11	2 9	328.8222457
NSG00000011600 T		protein_coding	0 1		e binding proteir					1.83E-13		0.42105263		0.77777778		8	1 7	1260.30377
NSG00000125538 IL		protein coding			IGNC Symbol;Acc					3.54E-13		0.26315789		0.55555556		5	0 5	748.3520971
NSG00000115956 PI		protein coding			mbol;Acc:HGNC:					5.63E-13		0.47368421		0.77777778		9	2 7	249.7421783
NSG00000106066 C		protein_coding			nic like [Source:F					9.06E-13		0.26315789		0.55555556		5	0 5	357.9943118
NSG00000158869 F		protein_coding			Ig [Source:HGNC					1.58E-12		0.47368421		0.77777778		9	2 7	1639.295931
NSG00000105374 N		protein coding			otein 7 [Source:H			GO:0016020		1.71E-12		0.63157895	0.3	1		12	3 9	751.6583492
NSG00000119535 C		protein coding			receptor [Source.					1.03E-11		0.26315789		0.55555556		5	0 5	113.5148614
NSG00000204103 N		protein coding			or B [Source:HGN					1.75E-11		0.26315789		0.55555556		5	0 5	56.0167119
NSG00000165168 C		protein_coding			in [Source:HGNC					2.23E-11		0.26315789		0.55555556		5	0 5	52.20530959
NSG00000135218 C		protein_coding			NC Symbol:Acc:H					3.07E-11		0.26315789		0.55555556		5	0 5	112.9190755
NSG00000197629 N		protein coding			ource:HGNC Sym		NA		11.3435382	3.17E-11		0.26315789		0.55555556		5	0 5	25.93889499
NSG00000197829 N		protein coding			nd 2 [Source:HGN					3.17E-11 3.18E-11		0.26315789		0.55555556		5	0 5	460,7027558
NSG00000000938 F		protein_coding		•	mily tyrosine kin					4.73E-11		0.36842105		0.666666667		7	1 6	124.0212561
NSG00000011422 PI		protein_coding			kinase receptor [5					7.41E-11		0.42105263		0.666666667		8	2 6	743.3460408
NSG0000011422 P		protein_coding			mbol;Acc:HGNC:					8.80E-11		0.42105265		0.55555556		5	2 6	129.6255834
NSG00000124882 C		protein coding			mbol;Acc:HGNC:					9.19E-11		0.42105263		0.666666667		8	2 6	481.1509937
NSG00000163221 S		protein_coding			in A12 [Source:H							0.26315789		0.55555556		5	0 5	153.0418772
NSG00000100453 G		protein_coding			Symbol;Acc:HGN					1.29E-10		0.52631579		0.77777778		10	3 7	532.0516267
NSG00000136250 A		protein_coding			ce:HGNC Symbol					1.64E-10		0.47368421		0.77777778		9	2 7	277.2074493
NSG00000138250 A		protein_coding			mbol;Acc:HGNC:					1.84E-10		0.47368421		0.55555556		5	2 7	176.6610185
NSG00000179639 F0		protein coding			la [Source:HGNC					2.56E-10		0.31578947		0.666666667		6	0 6	236.7580939
NSG00000175655 C		protein coding		•	IGNC Symbol;Acc				11.0077544	2.50E-10 2.59E-10		0.26315789		0.55555556		5	0 5	50.54552132
NSG00000110077 N		protein_coding			ains A6A [Source		NA	GO:0016020 GO:0016020		2.59E-10 2.75E-10		0.31578947		0.55555556		6	1 5	247.9803248
ENSG00000172243 C		protein_coding		0	ining 7A [Source:					5.74E-10		0.31578947		0.55555556		6	1 5	
N3G0000172243 U	+	protein_coung	c-type lectifi do	main conta	ming va (source:	00:0002376	30:0040872	30:0005737	10.0009244	5.74E-10	2.230-07	0.313/894/	0.1	0.35555556		U	1 2	211.2000869

GOAL: Identify: key molecules (TFs, miRNAs, master regulators), Enriched Biological

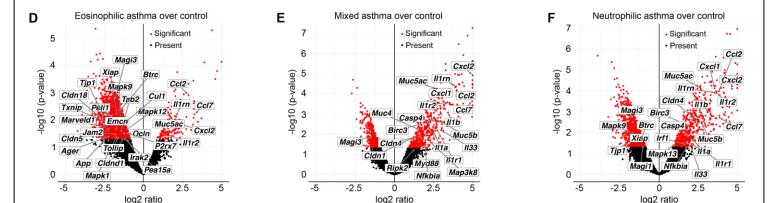

Processes/Pathways, Networks (links across candidates)

Step 2: Picking "relevant" genes-filtering results

- Fold change cutoff (e.g., > two fold change)
- Fold change rank (e.g., top 10%)
- FDR (e.g, <0.05)</p>
- Combinations of the above



Examples: data presentation-unbiased approach



Tan HT & Hagner S. et al Allergy 2019

Are upper and lower panels are showing the same information?

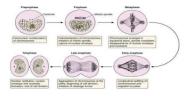
- <mark>a)</mark> Yes
- b) No
- Yes, with some additional information on the volcano plots

Step 3: Which <u>functional databases/gene ontologies/gene annotations</u> can be interrogated?

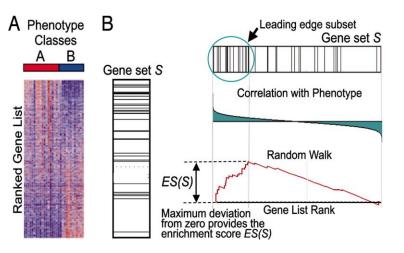
Gene Ontology

• Protein class

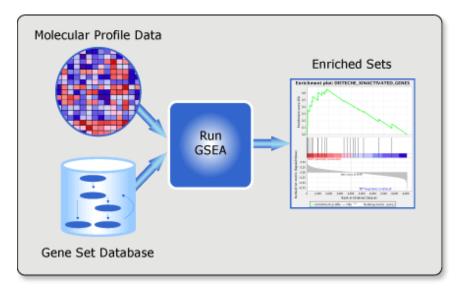
These databases are typically constructed based on protein-protein interaction experiments, signaling pathway disruption experiment, literature screening (and combinations of the above)


GO domains

- Three ontology domains:
 - **1. Molecular function:** basic activity or task *e.g. catalytic activity, calcium ion binding*
 - 2. Biological process: broad objective orgoal e.g. signal transduction, immune response
 - **3. Cellular component:** location or complex *e.g. nucleus, mitochondrion*
- Genes can have multiple annotations



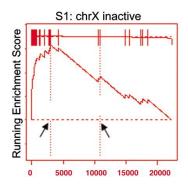
Step 4: Gene set enrichment analysis (GSEA)

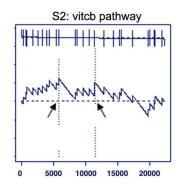

- Input: genes ordered in a ranked list L, according to their differential expression between the classes
- The goal of GSEA is to determine whether members of a gene set S are randomly distributed throughout the list L or tend to occur toward the top (or bottom) of L
- Enrichment score (ES) reflects the degree to which a set S is overrepresented at the extremes (top or bottom) of the entire ranked list L.
- calculated by walking down the list L, increasing a running-sum when we encounter a gene in S and decreasing it when we encounter genes not in S.
- ES is the max deviation from zero encountered in the random walk (Kolmogorov–Smirnov test)

Gene Set Enrichment Analysis

http://software.broadinstitute.org/gsea/index.jsp

Gene set enrichment analysis (GSEA)

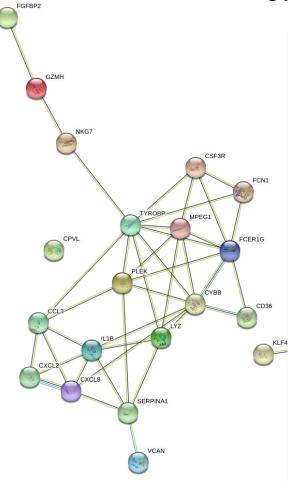



Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. Epub 2005 Sep 30.

Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.

Subramanian A¹, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP.

Step 5: Tools for functional enrichment analysis


- Free tools:
 - GSEA <u>http://software.broadinstitute.org/gsea/index.jsp</u>
 - WebGestalt <u>http://www.webgestalt.org/</u>
 - Panther <u>http://www.pantherdb.org/</u>
 - DAVID <u>https://david.ncifcrf.gov/</u>
 - STRING <u>https://string-db.org</u>
 - Cytoscape <u>https://cytoscape.org/</u>
 - R-Packages: topGO, GSEABase, clusterProfiler,...
- Commercial tools :
 - MetaCore/GeneGo <u>https://portal.genego.com/</u>
 - Ingenuity Pathway Analysis (IPA) <u>https://apps.ingenuity.com/ingsso/login</u>

GO Enrichment - Examples

GO-Term	P-Value	Ratio	I
immune response	2.77e-14	50/289	
T-helper 17 cell differentiati	5.45e-05	3/3	
positive regulation of natural	4.24e-06	7/16	
.regulation of immune response	7.26e-07	16/81	
inflammatory response	3.11e-09	39/252	
cellular defense response	6.71e-07	13/49	
G-protein coupled receptor sig	7.12e-07	28/161	-
cytokine-mediated signaling pa	2.39e-06	23/196	5
.chemokine-mediated signaling p	1.66e-05	8/22	(
negative regulation of viral g	3.33e-06	8/30	a
positive regulation of natural	2.58e-05	4/5	C
response to virus	5.88e-05	13/96	-
.defense response to virus	4.86e-08	20/120	F
cytolysis	8.07e-05	5/13	
positive regulation of cell ad	9.08e-05	8/29	

289 Genes in the
→ Gene Universe are annotated with
'Immune
Response'

50 Genes in Candidates List are belonging to 'Immune Response'

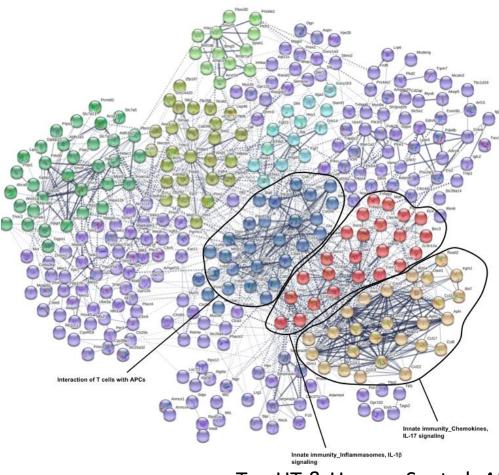
• <u>https://string-db.org</u>

STRING enrichment

Functional enrichments in your network

	Biological Process (GO)		
GO-term	description	count in gene set	false discovery rate
GO:0036230	granulocyte activation	9 of 502	7.41e-07
GO:0006952	defense response	12 of 1234	7.41e-07
GO:0002376	immune system process	15 of 2370	7.41e-07
GO:0030593	neutrophil chemotaxis	5 of 59	1.89e-06
GO:0045321	leukocyte activation	10 of 894	2.35e-06
			(more)

	Molecular Function (GO)		
GO-term	description	count in gene set	false discovery rate
GO:0008009	chemokine activity	3 of 48	0.0036
GO:0005515	protein binding	16 of 6605	0.0045
GO:0005125	cytokine activity	4 of 216	0.0045
GO:0045236	CXCR chemokine receptor binding	2 of 16	0.0056
GO:0008329	signaling pattern recognition receptor activity	2 of 17	0.0056
			(more)

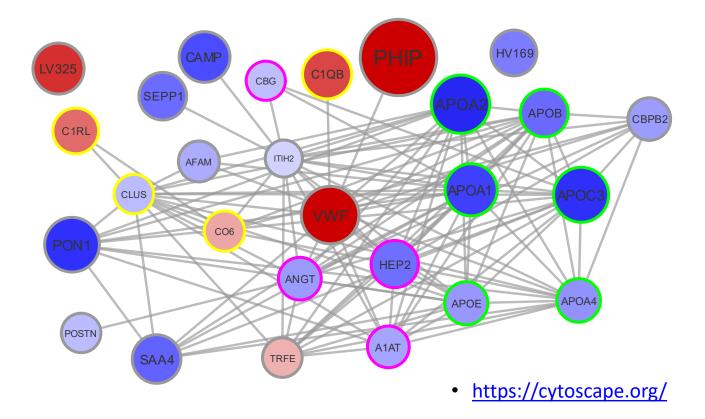

	Cellular Component (GO)		
GO-term	description	count in gene set	false discovery rate
GO:0030141	secretory granule	9 of 828	1.27e-05
GO:0005615	extracellular space	7 of 1134	0.0055
GO:0005576	extracellular region	10 of 2505	0.0055
GO:0030667	secretory granule membrane	4 of 298	0.0079
GO:0044433	cytoplasmic vesicle part	7 of 1447	0.0085
			(more)

	Reference publications		
publication	(year) title	count in gene set	false discovery rate
PMID:28573109	(2017) Persistence of Innate Immune Pathways in Late Sta	8 of 107	3.76e-08
PMID:16552065	(2006) Functional genomics of innate host defense molecul	5 of 10	2.25e-07
PMID:25828472	(2015) Stimulation of hepatocarcinogenesis by neutrophils	5 of 18	1.44e-06
PMID:25767696	(2015) Enhancement of COPD biological networks using a	6 of 51	1.44e-06
PMID:20525249	(2010) Response of the mouse lung transcriptome to weldi	6 of 57	1.62e-06
			(more)

	KEGG Pathways		
pathway	description	count in gene set	false discovery rate
hsa05132	Salmonella infection	4 of 84	0.00015
hea0/060	Cytoking-outoking recentor interaction	5 of 263	0 00027

STRING clustering

Neutrophilic AAI

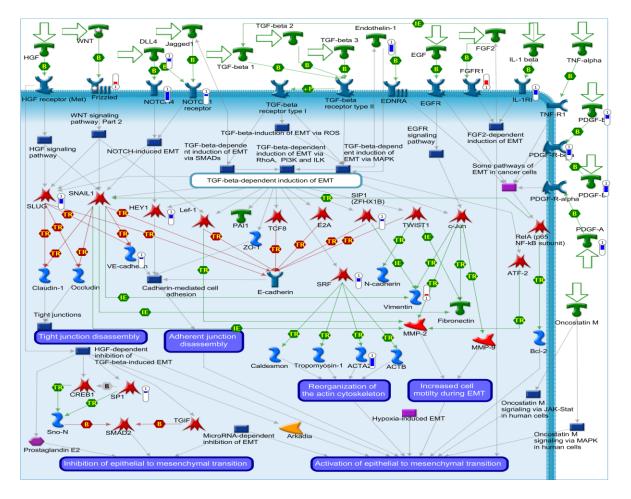


С

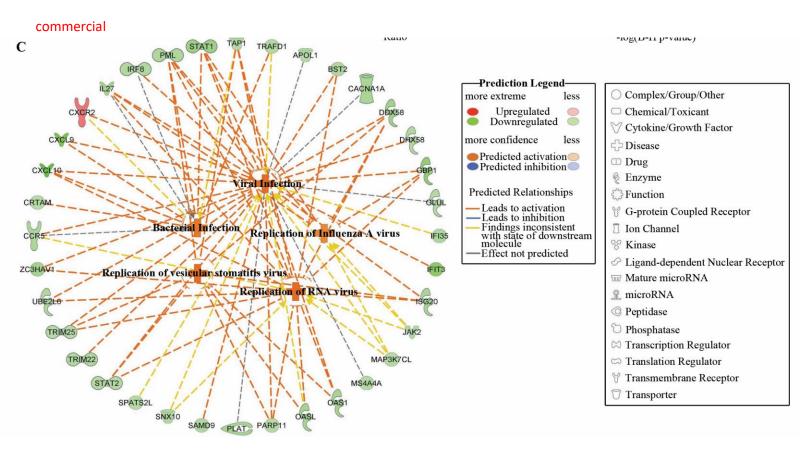
Tan HT & Hagner S. et al *Allergy* 2019

Cytoscape

Pathway Enrichment - Example Graphs produced with Metacore https://portal.genego.com

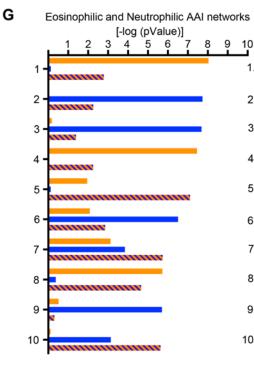

commercial

- upload a file with list of genes of interest (eg. differentially expressed genes)
- one click enrichment analysis (eg. pathway enrichment analysis)


Maps	0	2	4	6	8	-log(pValue)	pValue 🕈	FDR	Ratio
Cell adhesion_Endothelial cell contacts by junctional mechanisms							4.742e-10	3.841e-7	13/26
Cell adhesion_Chemokines and adhesion							2.305e-9	6.466e-7	24/100
Development_Regulation of epithelial-to-mesenchymal transition (EMT)							2.395e-9	6.466e-7	19/64
Main pathways of Schwann cells transformation in neurofibromatosis type 1							1.307e-7	1.825e-5	19/80
Muscle contraction_Regulation of eNOS activity in endothelial cells							1.333e-7	1.825e-5	17/65
Development_Oligodendrocyte differentiation from adult stem cells							1.352e-7	1.825e-5	15/51
Development. Regulation of endothelial progenitor cell differentiation from adult stem cells							2.332e-7	2.699e-5	16/60
Cytoskeleton remodeling_Cytoskeleton remodeling							3.887e-7	3.936e-5	21/102
Cell adhesion_Endothelial cell contacts by non-junctional mechanisms							4.404e-7	3.964e-5	10/24
Role of red blood cell adhesion to endothelium in vaso-occlusion in Sickle cell disease							7.603e-7	5.174e-5	12/37

 by clicking on the pathway name, one can get a full picture of the genes involved in that pathway, with genes from the uploaded list specifically marked (example on the next slide: Development regulation of EMT)

Pathway Enrichment - Example Graphs produced with MetaCore https://portal.genego.com



Pathway Enrichment - Example Graphs produced with IPA

Sokolowska M et al. J Allergy Clin Immunol 2017

Question 2: Is innate inflammatory response significantly enriched in eosinophilic AAI?

- 1. Regulation of cytoskeleton rearrangement
- Th17-derived cytokines
- 3. IL-10 anti-inflammatory response
- 4. Actin filaments
- 5. Wnt_beta-catenin,Notch, VEGF, IP3 and integrin signaling
- 6. HMGB1 signaling
- 7. Regulation of angiogenesis
- 8. Integrin-mediated cell-matrix adhesion
- 9. Innate inflammatory response
- 10. Platelet-endothelium leucocyte interactions

Yes No It is significant in

a

b)

c)

both neutrophilic and eosinophilic AAI

Unique genes in eosinophilic AAI

Unique genes in neutrophilic AAI

Common genes in eosinophilic and neutrophilic AAI

Tan HT & Hagner S. et al Allergy 2019

Conclusions

- Functional annotation is reliable only for a handful of organisms (notably human and mouse)
- Bear in mind that there are many categories (>1000)
- Be critical and inspect carefully your enrichment results (e.g. check with different tools)
- Rank based methods generally are more robust and versatile
- Try to combine thresholds on p-values and fold-change to define the set of differentially expressed genes

milena.sokolowska@siaf.uzh.ch

